首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6055篇
  免费   483篇
  国内免费   597篇
  2023年   59篇
  2022年   120篇
  2021年   326篇
  2020年   242篇
  2019年   312篇
  2018年   293篇
  2017年   227篇
  2016年   303篇
  2015年   395篇
  2014年   517篇
  2013年   463篇
  2012年   632篇
  2011年   551篇
  2010年   380篇
  2009年   305篇
  2008年   343篇
  2007年   286篇
  2006年   212篇
  2005年   192篇
  2004年   133篇
  2003年   134篇
  2002年   100篇
  2001年   75篇
  2000年   65篇
  1999年   55篇
  1998年   21篇
  1997年   32篇
  1996年   21篇
  1995年   26篇
  1994年   20篇
  1993年   17篇
  1992年   31篇
  1991年   37篇
  1990年   21篇
  1989年   24篇
  1988年   10篇
  1987年   22篇
  1986年   18篇
  1985年   17篇
  1984年   6篇
  1983年   12篇
  1982年   7篇
  1981年   4篇
  1980年   11篇
  1979年   4篇
  1978年   7篇
  1974年   6篇
  1973年   7篇
  1971年   5篇
  1967年   4篇
排序方式: 共有7135条查询结果,搜索用时 421 毫秒
991.
992.
993.
Lectins and antimicrobial peptides (AMPs) are widely distributed in various insects and play crucial roles in primary host defense against pathogenic microorganisms. Two AMPs (cecropin and attacin) have been identified and characterized in the larvae of housefly. In this study, two novel C‐type lectins (CTLs) were obtained from Musca domestica, while their agglutinating and antiviral properties were evaluated. Real‐time PCR analysis showed that the mRNA levels of four immune genes (MdCTL1, MdCTL2, Cecropin, and Attacin) from M. domestica were significantly upregulated after injection with killed Gram‐negative Escherichia coli. Moreover, purified MdCTL1‐2 proteins can agglutinate E. coli and Staphylococcus aureus in the presence of calcium ions, suggesting their immune function is Ca2+ dependent. Sequence analysis indicated that typical WND and QPD motifs were found in the Ca2+‐binding site 2 of carbohydrate recognition domain from MdCTL1‐2, which was consistent with their agglutinating activities. Subsequently, antiviral experiments indicated that MdCTL1‐2 proteins could significantly reduce the infection rate of Spodoptera frugiperda 9 cells by the baculovirus Autographa californica multicapsid nucleopolyhedrovirus, indicating they might play important roles in insect innate immunity against microbial pathogens. In addition, MdCTL1‐2 proteins could effectively inhibit the replication of influenza H1N1 virus, which was similar to the effect of ribavirin. These results suggested that two novel CTLs could be considered a promising drug candidate for the treatment of influenza. Moreover, it is believed that the discovery of the CTLs with antiviral effects in M. domestica will improve our understanding of the molecular mechanism of insect immune response against viruses.  相似文献   
994.
Land plants in natural soil form intimate relationships with the diverse root bacterial microbiota. A growing body of evidence shows that these microbes are important for plant growth and health. Root microbiota composition has been widely studied in several model plants and crops; however, little is known about how root microbiota vary throughout the plant's life cycle under field conditions. We performed longitudinal dense sampling in field trials to track the time-series shift of the root microbiota from two representative rice cultivars in two separate locations in China. We found that the rice root microbiota varied dramatically during the vegetative stages and stabilized from the beginning of the reproductive stage, after which the root microbiota underwent relatively minor changes until rice ripening. Notably, both rice genotype and geographical location influenced the patterns of root microbiota shift that occurred during plant growth. The relative abundance of Deltaproteobacteria in roots significantly increased overtime throughout the entire life cycle of rice, while that of Betaproteobacteria, Firmicutes, and Gammaproteobacteria decreased. By a machine learning approach, we identified biomarker taxa and established a model to correlate root microbiota with rice resident time in the field(e.g., Nitrospira accumulated from 5 weeks/tillering in field-grown rice). Our work provides insights into the process of rice root microbiota establishment.  相似文献   
995.
996.
997.
Nilaparvata lugens and Sogatella furcifera are two primary planthoppers on rice throughout Asian countries and areas. Neonicotinoid insecticides, such as imidacloprid (IMI), have been extensively used to control rice planthoppers and IMI resistance consequently occurred with an important mechanism from the over‐expression of P450 genes. The induction of P450 genes by IMI may increase the ability to metabolize this insecticide in planthoppers and increase the resistance risk. In this study, the induction of P450 genes was compared in S. furcifera treated with IMI and nitromethyleneimidazole (NMI), in two planthopper species by IMI lethal dose that kills 85% of the population (LD85), and in N. lugens among three IMI doses (LD15, LD50 and LD85). When IMI and NMI at the LD85 dose were applied to S. furcifera, the expression changes in most P450 genes were similar, including the up‐regulation of nine genes and down‐regulation of three genes. In terms of the expression changes in 12 homologous P450 genes between N. lugens and S. furcifera treated with IMI at the LD85 dose, 10 genes had very similar patterns, such as up‐regulation in seven genes, down‐regulation in one gene and no significant changes in two genes. When three different IMI doses were applied to N. lugens, the changes in P450 gene expression were much different, such as up‐regulation in four genes at all doses and dose‐dependent regulation of the other nine genes. For example, CYP6AY1 could be induced by all IMI doses, while CYP6ER1 was only up‐regulated by the LD50 dose, although both genes were reported important in IMI resistance. In conclusion, P450 genes in two planthopper species showed similar regulation patterns in responding to IMI, and the two neonicotinoid insecticides had similar effects on P450 gene expression, although the regulation was often dose‐dependent.  相似文献   
998.
999.
Simple sequence repeat (SSR) markers are very useful for genetic applications in plants, but SSR resource for the important tree genus Casuarina L. ex Adans. is still limited. In this study, we report a novel set of 223 SSR markers in Casuarina developed from expressed sequence tag (EST) resource of GenBank. The 223 EST-SSR markers were polymorphic among 10 unrelated individuals of C. equisetifolia L. Johnson, with the number of alleles per locus (Na), observed heterozygosity (Ho), expected heterozygosity (He), and polymorphic information content (PIC) averaging at 5.5, 0.72, 0.86, and 0.63, respectively. The rates of cross-species transferability ranged from 96.9% (C. glauca Sieber ex Sprengel) through 97.8% (C. cunninghamiana Miquel) to 99.1% (C. junghuhniana Miquel). Fifty-five C. equisetifolia clones widely planted in China were successfully genotyped with a subset of 20 EST-SSRs. These newly developed markers will have a great potential for genetic and breeding applications in Casuarina species and related taxa.  相似文献   
1000.
A new cellulolytic strain of Chryseobacterium genus was screened from the dung of a cattle fed with cereal straw. A putative cellulase gene (cbGH5) belonging to glycoside hydrolase family 5 subfamily 46 (GH5_46) was identified and cloned by degenerate PCR plus genome walking. The CbGH5 protein was overexpressed in Pichia pastoris, purified and characterized. It is the first bifunctional cellulase–xylanase reported in GH5_46 as well as in Chryseobacterium genus. The enzyme showed an endoglucanase activity on carboxymethylcellulose of 3237 μmol min?1 mg?1 at pH 9, 90 °C and a xylanase activity on birchwood xylan of 1793 μmol min?1 mg?1 at pH 8, 90 °C. The activity level and thermophilicity are in the front rank of all the known cellulases and xylanases. Core hydrophobicity had a positive effect on the thermophilicity of this enzyme. When similar quantity of enzymatic activity units was applied on the straws of wheat, rice, corn and oilseed rape, CbGH5 could obtain 3.5–5.0× glucose and 1.2–1.8× xylose than a mixed commercial cellulase plus xylanase of Novozymes. When applied on spent mushroom substrates made from the four straws, CbGH5 could obtain 9.2–15.7× glucose and 3.5–4.3× xylose than the mixed Novozymes cellulase+xylanase. The results suggest that CbGH5 could be a promising candidate for industrial lignocellulosic biomass conversion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号